Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 35(1): 18, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526654

RESUMO

Surface modification of titanium and its alloys has been seriously considered by researchers to improve their biological behaviors, in the past few decades. In present research, hydroxyapatite (HA) based composite coatings with different concentrations of 0, 2, 4, and 6 wt% of silver (Ag) nanoparticles were electrophoretically deposited (EPD) on anodized and non-anodized Ti6Al4V, using a direct current at a voltage of 30 V for 10 min at room temperature. The specimens were then characterized by means of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The cell adhesion images and cell viability results showed that HA-Ag composite coatings significantly promoted the biocompatibility of samples compared with the non-anodized and anodized Ti6Al4V. The viabilities of Mg-63 cells on HA-4%Ag coating and bi-layer coating (HA-4%Ag on anodized specimen) were approximately 91% and they were considered as the best coatings in term of biocompatibility. On the other hand, the antibacterial assessments demonstrated that HA-6%Ag coating had the best antibacterial performance compared with other samples. Furthermore, Tafel polarization curves indicated that corrosion resistance of the bi-layer coating was higher than those of the other specimens. The polarization resistance of this coating was about 7 times more than that of theTi6Al4V alloy.


Assuntos
Durapatita , Nanopartículas Metálicas , Durapatita/química , Titânio/química , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Materiais Revestidos Biocompatíveis/química , Corrosão , Difração de Raios X , Ligas/química , Antibacterianos
2.
J Mech Behav Biomed Mater ; 77: 660-670, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102891

RESUMO

An Oxygen Diffusion Layer (ODL) was generated on the surface of Ti6Al4V alloy by thermal oxidation treatment. In vitro tests for cytotoxicity were performed in the presence of Ti6Al4V and the ODL samples with the culture of G292 Cells using MTT assay. The results showed a similar cell viability in the presence of the both samples. Wear behaviour of Ti6Al4V and the ODL samples was investigated in a phosphate buffered saline solution under a normal load of 30N at a sliding velocity of 0.1m/s. The worn surface and subsurface of the samples were studied using SEM, STEM, TEM, XPS, AFM, nano-hardness and surface profilometry. A bio-tribofilm was observed on the worn surface of the ODL. TEM studies showed that the tribofilm had an amorphous structure and contained oxygen and phosphorous as confirmed by XPS and EDS analysis. AFM images also revealed that the tribofilm consisted of compacted fine debris. The formation of the tribofilm on the ODL with higher hardness and strength resulted in a decrease of about 95% in the wear rate compared with Ti6Al4V alloy.


Assuntos
Materiais Biocompatíveis/química , Líquidos Corporais , Oxigênio/química , Titânio/química , Ligas/química , Linhagem Celular , Sobrevivência Celular , Difusão , Dureza , Humanos , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Osteoblastos/metabolismo , Oxirredução , Fósforo/química , Plásticos , Estresse Mecânico , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...